Jump to content

Template:Hex/doc

From Meta, a Wikimedia project coordination wiki

This template shows the exact value of a number of type float.

The significand is given in hexadecimal format, which, apart from the sign, consists of a fixed "1.", followed by 13 hexadecimal characters.

Denormal numbers are shown in normalized format, not in internal format, but without inherently zero digits.

No distinction is made between 0 and -0.

For numbers of type integer which are not exactly representable as float the integer is rounded to float. If an integer just below 2^n is rounded to 2^n the result is shown in the form 2*2^(n-1), thus giving the exponent the value it would have in an exact floating-point representation (which would require up to 10 bits more, hence up to three hexadecimal digits more).

See also Help:Calculation accuracy.

Examples

[edit]
  • {{hex}}
  • {{hex|a}}a
  • {{hex|0}}0
  • {{hex|-0}}0
  • {{hex|1/7}}1.2492492492492hex*2^-3
  • {{hex|-2/3}}-1.5555555555555hex*2^-1
  • {{hex|123}}1.ec00000000000hex*2^6
  • {{hex|.0123}}1.930be0ded288dhex*2^-7
  • {{hex|1+2^-52}}1.0000000000001hex*2^0
  • {{hex|1.0000000000000002}}1.0000000000001hex*2^0
  • {{hex|1+2e-16}}1.0000000000001hex*2^0
  • {{hex|-1e309}}-INF
  • {{hex|1e309}}INF
  • {{hex|1e308}}1.1ccf385ebc8a0hex*2^1023
  • {{hex|1e307}}1.c7b1f3cac7433hex*2^1019
  • {{hex|1e306}}1.6c8e5ca239029hex*2^1016
  • {{hex|1e305}}1.23a516e82d9bahex*2^1013
  • {{hex|1e304}}1.d2a1be4048f90hex*2^1009
  • {{hex|1e303}}1.754e31cd072dahex*2^1006
  • {{hex|1e302}}1.2aa4f4a405be2hex*2^1003
  • {{hex|1e301}}1.ddd4baa009303hex*2^999
  • {{hex|1e300}}1.7e43c8800759chex*2^996
  • {{hex|1e299}}1.31cfd3999f7b0hex*2^993
  • {{hex|1e298}}1.e94c85c298c4chex*2^989
  • {{hex|1e297}}1.87706b0213d0ahex*2^986
  • {{hex|1e296}}1.3926bc01a973bhex*2^983
  • {{hex|1e295}}1.f50ac6690f1f8hex*2^979
  • {{hex|1e294}}1.90d56b873f4c7hex*2^976
  • {{hex|1e293}}1.40aabc6c32a38hex*2^973
  • {{hex|1e292}}1.008896bcf54fahex*2^970
  • {{hex|1e-308}}1.cc359e067a348hex*2^-1024
  • {{hex|1e-309}}1.702ae4d1fb5ehex*2^-1027
  • {{hex|1e-310}}1.2688b70e62bhex*2^-1030
  • {{hex|1e-311}}1.d74124e3d1hex*2^-1034
  • {{hex|1e-312}}1.7900ea4fd8hex*2^-1037
  • {{hex|1e-313}}1.2d9a550cchex*2^-1040
  • {{hex|1e-314}}1.e2908814hex*2^-1044
  • {{hex|1e-315}}1.820d39ahex*2^-1047
  • {{hex|1e-316}}1.34d761hex*2^-1050
  • {{hex|1e-317}}1.ee257hex*2^-1054
  • {{hex|1e-318}}1.8b510hex*2^-1057
  • {{hex|1e-319}}1.3c40hex*2^-1060
  • {{hex|1e-320}}1.fa0hex*2^-1064
  • {{hex|1e-321}}1.94hex*2^-1067
  • {{hex|1e-322}}1.4hex*2^-1070
  • {{hex|1e-323}}1.0hex*2^-1073
  • {{hex|1e-323/2}}1.hex*2^-1074
  • {{hex|1e-323/3}}1.hex*2^-1074
  • {{hex|1e-323/4}}0
  • {{hex|.{{loop|323|0}}25}}1.hex*2^-1074
  • {{hex|.{{loop|323|0}}24}}0
  • {{hex|1000000e-324}}0
  • {{hex|1.71*2^-1021}}1.b5c28f5c28f5chex*2^-1021
  • {{hex|1.71*2^-1022}}1.b5c28f5c28f5chex*2^-1022
  • {{hex|1.71*2^-1023}}1.b5c28f5c28f5chex*2^-1023
  • {{hex|1.71*2^-1024}}1.b5c28f5c28f5chex*2^-1024
  • {{hex|1.71*2^-1025}}1.b5c28f5c28f60hex*2^-1025
  • {{hex|1.71*2^-1064}}1.b5chex*2^-1064
  • {{hex|1.71*2^-1065}}1.b60hex*2^-1065
  • {{hex|1.71*2^-1066}}1.b6hex*2^-1066
  • {{hex|1.71*2^-1067}}1.b6hex*2^-1067
  • {{hex|1.71*2^-1068}}1.b4hex*2^-1068
  • {{hex|1.71*2^-1069}}1.b8hex*2^-1069
  • {{hex|1.71*2^-1070}}1.bhex*2^-1070
  • {{hex|1.71*2^-1071}}1.chex*2^-1071
  • {{hex|1.71*2^-1072}}1.chex*2^-1072
  • {{hex|1.71*2^-1073}}1.8hex*2^-1073
  • {{hex|1.71*2^-1074}}1.0hex*2^-1073
  • {{hex|3*2^-1074}}1.8hex*2^-1073
  • {{hex|2*2^-1074}}1.0hex*2^-1073
  • {{hex|1*2^-1074}}1.hex*2^-1074

Numbers of type integer which are not exactly representable as float:

  • {{hex|trunc(2^62-512)+trunc511}}2hex*2^61